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Besides numerical methods of solution, exact solutions are very important for any equa- 
tion, especially those which describe the motion of real media. They make it possible to 
reveal the qualitative characteristics of the phenomena studied, to construct asymptotic 
solutions of specific problems, and in some cases to find the actual solutions. On the ba- 
sis of methods of group analysis of differential equations we construct two classes of exact 
solutions and give a mechanical interpretation of them. The second class of exact solutions 
is used to construct a closed solution of problems of the helical motion of a Bingham fluid 
between two coaxial cylinders. 

i. Group Properties of the Equations of Steady-State Isothermal Flow of a Viscoplastic 
Medium. The systems of equations describing the slow flow of a viscoplastic medium can be 
written as [i, 2] 

V i ~ = V kH; ( i. i) 

ViV i = 0, i = ], 2, 3, (1.2) 

where  v i a r e  t h e  componen t s  o f  t h e  v e l o c i t y  v e c t o r ;  T k i  = 2(~ + x 0 / h )  e k i ;  e k i  = 1 / 2 ( v k v  i + 

v i v k ) ;  h = V 2 Z ( e h i ) 2 ]  1/2., xk i  a r e  t h e  componen ts  o f  t h e  s t r e s s  t e n s o r ;  e k i  a r e  t h e  components  
[ - ~  J �9 

o f  t h e  s t r a i n - r a t e  t e n s o r ;  H i s  t h e  r e d u c e d  p r e s s u r e ;  ~ i s  t h e  v i s c o s i t y ;  and ~0 i s  t h e  maxi -  
mum s h e a r  S t r e s s .  

Us ing  t h e  p r o c e d u r e  o f  [3 ,  4 ] ,  we f i n d  t h e  g roup  o f  c o n t i n u o u s  t r a n s f o r m a t i o n s  a d m i t t e d  
by t h e  s y s t e m  ( 1 . 1 ) ,  ( 1 . 2 ) ,  a f t e r  e l i m i n a t i n g  t h e  s t r e s s - t e n s o r  componen t s .  Th i s  g roup  i s  
g e n e r a t e d  by t h e  o p e r a t o r s  

X~ = O~ i, Y i  = O~i, i = 1 , 2 , 3 ,  S = Ou, 

N = xr i + viO~, T 1 = x ~ O ~ - -  x30,~, 

T~ = x~O~l - -  x10 @, T.~ = xlO~ - -  x~O ~, 

Z 1 = x~Ox, - -  x30x ~ + v~Ov3 - -  v30~-, ( 1 . 3  ) 

Z 2 = x 3 O x l  - -  x l O x 3  -3 l- v30vl - - / )10 ,3  , 

Z a = xlOx ~ - -  x~Ox~ + vlcgv~ - -  vfO~t. 

The L i e  a l g e b r a  ( 1 . 3 )  i s  a s u b a l g e b r a  o f  a s p e c i a l  form o f  L i e  a l g e b r a ,  which  i s  a d m i t t e d  by 
plasticity equations with the Mises yield criterion [5]. This makes it possible to build a 
solution immediately, using the tables in [5]. 

2. Invariant Solutions. We construct an invariant solution on the subgroup X 3 + ~Y3 + 
~T 3 + 2CIS. After elementary transformations this solution takes on the form 

W = A (x~ - -  x~ - -  2x~) - -  2Sx~x~ - -  Cx~ + Dx~xa,~ 

v ~ = 2 A x l x  ~ + B (x~ - -  x~ - -  2x~) - -  Cx~ - -  D x , x  3, ( 2 . 1 )  

v 3 = ~(x~, xa) q- 4 A x l x a  q- 4Bx~x3 q- 2Cxa, 

H = ](x~, x~) q- 2ClXa, A, B, C, D, Cx - -  const. 

Here t h e  f u n c t i o n s  ~0, f a r e  d e t e r m i n e d  f rom t h e  e q u a t i o n s  
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o o % %j] 2C~, 

h 2 = [(4~4X 1 -~- 4BY 2 -~ 2C) 2 ~- (Dx. ~- ~p,~)~ -~- (--Dx~ + ~p,2)z ], 

/ (Zl ,  x2) = 2711. 

This solution can be used to analyze the stress-strain state of a viscoplastic rod, which 
is deformed by loads applied to the ends and torsional and bending moments that are equiva- 
lent to the longitudinal force. 

Suppose that D = 0 and ~ = const, whereupon the velocity field has the form 

v 1 = A (x~ - -  x~ - -  2x~) - -  2Bxlx  2 - -  Cxl, 

~ = - 2 A ~ x . ~  + ~ (x~  - -  4 - -  2x~)  - -  C z ~ ,  

v 3 : Axlx2 -+- Bx2x~ --  Cx~, 

and the components of the deviator of the stress tensor are 

.dl : ~22 : __~] (4Axl + 4Bx2 + 2C) - -  %•  

I" 33 : - - 2 T  11, H = T n -~- 2Clx 3 ~ const  

(• : s ign (4Ax 1 -~ 4Bx  2 -~ C)). 

In the case under consideration the medium is everywhere in the deformed state, excluding 
the plane 2Ax I + 2Bx 2 + C = 0, which does not deform. This plane, therefore, can be taken 
to be a rigid plate, which deforms the half-space 2Ax I + 2Bx 2 + C < 0. 

Suppose now that A = B = D = 0 in the solution (2.1). In this case the velocity field 
is 

v ~ : - - C x .  v 2 = - - C x ~ ,  v 3 = 2Cx3 § ~ ( x l ,  x2), 

H :  ~ u + C l x 3  + const ,  ( 2 . 2 )  

and ~ is determined from 

~]A~ + % div V~; = 2C1, 
Y ~ + (v~) 2 (2.3) 

where for convenience we assume that C = I/v~. 

Suppose that ~ = ~(xl), whereupon the solution (2.2) generalizes the solution of Myasni- 
kov [6] about the compression of the viscoplastic layer by rigid plates to the three-dimen- 
sional case. Since the pertinent investigation does not differ fundamentally from [6], we 
do not give it here. 

Suppose that ~ = ~(r), where r and 8 are the polar coordinates. The equation for the 
desired function has the form 

, T0~' Zr+Lr Z=2C. z = ~ ' + V ~ ,  

f r o m  w h i c h  we g e t  an  a l g e b r a i c  e q u a t i o n  f o r  d e t e r m i n i n g  @' :  

9 '4 - -  29 '~K + 9'2(K2 + t - -  $2 ) - -  2 ~ ' K  + K ~ = 0 ( 2 . 4 )  

(K : C~/(~r) + Clr/~, C2 : const ,  S = %/~). 

Clearly, it is difficult to find the solution of Eq. (2.4) in explicit form. We assume, 
therefore, that S >> 1 and we look for the solution of this equation, expanding it in nega- 
tive degrees of S. Suppose that ~' = A + BS -l + 0(S-2). Substituting this into (2.4), we 
find the solution 

A 01r2 + C~ A (1 + A ~) 
~ B =  

V r  2-(Clr2+C2)2 V i + A  2 '~AK' 

w h i c h  c a n  be  u s e d  t o  d e s c r i b e  v i s c o p l a s t i c  f l o w  i n  a c o m p r e s s i n g  t u b e .  
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We construct the solution on the two-parameter subgroup <X 3 + ~S, 
be sought in the form (rOz is the cylindrical coordinate system) 

I [  = ~0  + ~,z + p(r) ,  v~ == v,(r) ,  Vo ---- v~ (r), v ,  :-= v ,  (r), 

For simplicity we set v r = 0 and as a result we have 

op *oo a 0%'~ + 2 ~ro O~rz ~,'z 
0," ," ' --7- = 0 , - -  --" ~ [~-= -'Y? + "V'~ 

Z a + aS>. This must 

from which it follows that 

Tro = Cr +" 2C2r -2, rr~ = ~r + 2CF "-I, C~ -- const. 

From (2.5) we can easily find the expressions 

Dz (]3 -{- T0///~) = -- '0,5~/" -~7 C~_l "-1, 

( 4  - ~r + ~o~0  = - o , 5 ~  + c._,,.-~ (,,,.~ = ~;;~ + ( 4  - ~,~/,~)~-). 

( 2 . 5 )  

(2.6) 

Denoting ~rO = XTrz, we find Xv z' = (v 8' - v0/r). When we substitute this into (2.5) we 

o b t a i n  t h e  q u a d r a t u r e  f o r  d e t e r m i n i n i n g  Vz: v z -  qVl+s q 2 i~'~" ' and find v o from 

v o' -vo/r = lVz', which is easily integrated. 

We use the results to construct the solution of the problem of the helical motion of a 
Bingham fluid between two coaxial cylinders. This problem arises, e.g., in hydrodynamic 
studies on drilling boreholes [i, 7, 8]. 

3. Helical Motion of a Viscoplastic Medium between Two Coaxial Cylinders. We consider 
the following flow scheme. A viscoplastic fluid, described by the Shvedov-Bingham model, 
flows between two coaxial vertical cylinders under the effect of a pressure drop Ap. The 
inner tube rotates with a constant angular frequency ~. 

We choose a cylindrical coordinate system as the reference system. We direct the z 
axis along the axis of the tube and r along its radius. We confine the investigation to laminar 
flow modes. In the given coordinate system the velocity componet on the r axis is zero, i.e., v r = 0. 
Moreover, by virtue of axisymmetry the sought quantities do not depend on 8. We assume that 
the ratio of the radius of the outer cylinder r 3 to the tube length L is small, i.e., e = 
r3/L << i. In particular, this condition is satisfied for boreholes being drilled. Using 
the methods of similarity theory and dimensionless analysis, we can show that the general 
system of equations describing the flow of a viscoplastic medium is described, to within 
0 ( ~ 2 ) ,  a s  

h ' ~ = ( t +  i) [ - d ~ + - y  -~; ( 3 . 1 )  

a q  [ aL. ~,~] 
K ~ G 7 = ( I +  i) 2 + ~ + ~ -  ; ( 3 . 2 )  

@ (~{o~) ~" ~ v$ 
O'-B- -- All R (3.3) 

Here 
Vo = Vo,/roco; Vz = Vz/Vo; H-:= (p + pgz)/(po - -  P l  - -  pgL); 

- - "  "Crz=-- "Cro . . . .  d = r  3 - r o ;  h ~ =  + 
t o ' Tr z' Tro' h o ' 

~l Vo r o (o r I 
TT~ = -U (t + I);  Tro = T ( i  + I),; 

A H  = Po - -  P~ - -  9gL;  

P0 and Pl are the pressures at the channel inlet and exit; r0 and r 3 are the radii of the 
inner and outer cylinders; p is the density of the medium; to is the time scale; �9 is the 
time; v0 is the scale for the longitudinal velocity, determined from 
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WRo = K .  [ / i  - - ( i  - -  K,)~ La~/( l  - -  K~), ( 3 . 4 )  

where R0 = r0/d; La = AHd/(2~0 L) is the Lagrange criterion; W = ~q/~0 is the dimensionless 
angular velocity; K v = v0/m0; m0 = hHd~/(2qL) is the characteristic flow velocity when the 

maximum shear stress ~0 = 0; g is the free fall acceleration; I = d~0/q/v0 ~ + (mr0) a is the 
Ilyushin criterion; and K~ = d2p/qt0 characterizes the time of reconstruction of the veloc- 
ity profiles in the flow. If it is substantially shorter than the characteristic time of 
the process to, then K << 1 and can be assumed to be a steady-state process. In particular, 
this condition is satisfied in the flow of the boring solution during drilling. 

We consider the situation when K~ << I. Then, clearly, system (3.1)-(3.3) accords with 
the factor-system for the invariant solution <Xa + $S, Za + aS>, if we set a = 0 and $ = -2 
in the latter. The invariant solution under consideration can thus be used to describe the 
steady-state flow of a viscoplastic fluid between two coaxial cylinders, when the inner one 
rotates with constant angular velocity. 

In order to find the respective constants in the invariant solution we must set bound- 
ary conditions, whose form depends on the type of flow. We distinguish two forms of flow, 
which differ from each other by the existence of a rigid core, where the stress does not 
exceed ~ o -  

First we consider flow in which a core exists. In this case the boundary condition 
can be written as 

1~ = Ro, V,~ := 1, V. = O; 

R : R , ,  I/o : 0 ,  V= = O; 

c)V e V n OV z 
R = R,,  I )  l = ~ o ~  OR ,'f = ,5)T = O; 

8 V  o V o OV z 

V~q R=RI  V, d R=R2' 

(R I = rl/d, R 2 = ra/d, and rz and r 2 are the radii of the core). 
obtained in Sec. 2 for the velocities and finding the respective constants from the boundary 
condition, we have 

(3.5) 
(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Integrating the equations 

where 

n2 2 [(R)~ /R0\~ ] 
v -  ~ +  Ro ~ , [ ~ )  J, R o < R < R , ;  

V 2 + R 3 2 Rj_ \ L /  J' 

R o ~ R ~ R~; 

Vo= + "k 2 -w:o 

m = x + I - -/V + + ' La~ ; Eal = L a / / ~  ; 

f l z [ U , V ] = v  Y L a ~ ( m - - ~ ) 2 ~ + o o s ~ a  

]o [u, v] = S d~ 
V ' L ~ ( , ~ - ~ ?  ~ + co~ ~ ~ ' 

V : Vz/(i Jr- I) ; sin ~ ----- (m-- 1)Lal; cosa : --Vi --sin 2a,' 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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and the dimensions of the core are found from two transcendental equations: 

t +  ~ x + m l n ~ + . f ~  1, - - J ~  x, = 0 ;  ( 3 . 1 6 )  

Here K R = (R3/Ro)2; x = (R2/RI)2; y = (RI/R0) = 

At a given pressure drop La an increase in the rotation velocity W entails an increase 
in the stresses in the flow and, hence, the width of the core 6 = R2 - RI decreases. A flow 
mode, when there is no rigid core, is thus theoretically possible. 

In this case we can easily obtain 

V---- ~ +  B o 2La Jz ~oo ' t ; ( 3 . 1 8 )  

1 
(x o - ~) d~ . where JoI ,'l=o 

determined by 

J$ ~u, v] = J 
d~ 

" ~ ~ g ( x o f : ~ f ~ + ~  

La = ( ]/-k-~ R -  1) jo  [KR, l]; 
(1 - -  K R + x o in K/~) 

W = 0,5g o {J~ [Kin t1 - -  La ( ]/K--~R + t ) /KR].  

; x 0 and Y0 are unknown parameters 

( 3 . 2 0 )  

( 3 . 2 1 )  

We note that Eqs. (3.18)-(3.21) hold only when the inequality (R/R0)2[x0 - (R/R0)2] 2 + 
y02 > i/(LaR0) 2 is Satisfied. This means that at all points of the flow the stress exceeds 
the maximum shear stress. 

4. Effect of the Rotation of the Inner Cylinder on the Hydraulic Friction Factor. Us- 
ing Eqs. (3.12) and (3.13), we can easily find an expression for the hydraulic friction fac- 
tor of an annular tube for a structural flow mode: 

64 " H ,  [=~71(  o R3~R1, R~,W), 

= (R~ + Ro) / (Ri~ ) ,  n~ = ~=  (2~)!n~ 

t -  K R 
fl = (?--x)'+ (I--+)(+ *i-- 2x)* 2m(xln?--i .--q]---+x). 

= f  ( , - -  v) (m--  t) dt 
Jp[U,V] . ]/I La~ (m -- t) t + c o s "  

In a similar fashion we obtain an expression for $, when there is no rigid core: 

= ( 6 4 / n e ) / ( R o ,  R3,  W ) ,  

I = (R3 + Ro)/(R~Q), 
~ = - -  (KR--t)2 + 2xo(KRln K n - - K R +  I ) - -  

_ _  K R  

2 ( V K . -  i) ~ (~: . -O(Xo-O~ 

The results of calculations at (R3/R0) s with these formulas are shown in Fig. i, where 
6 = R2 - RI, 
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~/~ 
3 _ ~ , x \  d 

" I  

�9 2 

0 $ 4 '~'-10 e 

Fig. 1 

64 (R~- R0)2 
, ' 

R 0 - R0)/ n (R0&)] 

6" is the hydraulic friction factor of a Newtonian fluid in an annular channel lines 1-3 
correspond to La = 2, 3, 5, and the dashed line corresponds to the boundary of the struc- 
tural flow mode. We see that in the case of structural or laminar flow mode the hydraulic 
friction factor only decreases as the rotational velocity of the inner cylinder rises. 
This means that at a given flow rate, if a structural or laminar flow mode is realized, the 
voltage drop should decrease with increasing rotational velocity. We note that the higher 
the rotational velocity, the closer the hydraulic friction factor of a Bingham fluid is to 
the corresponding factor for a Newtonian fluid. We can conclude, therefore, that at higher 
rotational velocities the Bingham fluid behaves more like a Newtonian fluid. This is be- 
cause the total stress in the flow increases, becoming substantially greater than the max- 
imum shear stress, as the angular velocity of the inner cylinder increases. 

This conclusion also makes it possible to explain the rise in the pressure with in- 
creasing rotational velocity, observed in [2, 8]. We must emphasize that these explanations 
must be sought from analysis of the turbulent flow of a Bingham fluid. Analyzing the depen- 
dence of $ on Re and the Hendstrom criterion He = BiRe (Bi is the Bingham criterion), given 
in [8], we note that at He < 5"10 5 the hydraulic friction factor is smaller than that of a 
Newtonian fluid and conversely at He > 5.10 5 This means that if the indicated mechanism 
by which the properties of a Bingham and a Newtonian fluid approach each other persists in 
the turbulent mode, it becomes obvious that the pressure drop in a turbulent flow can in- 
crease or decrease as the rotational velocity of the inner cylinder grows. If the fluid 
is characterized by He < 5.105 , a growth of the rotational velocity increases the hydraulic 
friction factor and, hence, the pressure drop. If He > 5.10 s, the reverse occurs: An in- 
crease in the rotational velocity causes the pressure drop to decrease. 

It is also interesting to note the nontrivial behavior of the flow core. As the lon- 
gitudinal pressure drop increases, as was to be expected, the thickness of the core de- 
creases. In this case, however, the structural mode of flow persists at high velocities. 

i. 

2. 

3. 

4. 

5. 

6. 
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REGARDING THE ARTICLE BY B. A. LUGOVTSOV "DETERMINATION 

OF THE MAIN FLOW PARAMETERS IN A SWIRL SPRAYER 

BY MEANS OF CONSERVATION LAWS" [i] 

G. Yu. Stepanov 

B. A. Lugovtsov examined the flow of an ideal incompressible fluid through a swirl 
sprayer with a cylindrical outlet. Figure i presents a sketch of the nozzle, with slight mod- 
ifications from the unit depicted in Fig. 3 of [I]. Walls I-i and 2-2 are infinitely dis- 
tant. The twisting of the flow is of a potential nature (ue = F/(2~r), F = const), the twist 
parameter A = RF/(2Q) = const, and the free surface of the hollow core of the vortex is mono- 
tonic (without standing waves). The pressure P2 = const = 0 in the meridional section. 

We use the Bernoulli integral (incorrectly referred to in [i] as the energy integral) 
on the free surface at z = -~ and z = 

.~ 2 9 

to obtain the discharge coefficient p = Q/(~R2 2~2B) and Rl - RI/R = A~ as functions of A and 
R2 = R=/R. The second of these functions is shown by the solid curves in Fig. 2. However, 
single-valued dependences of ~, RI, and R2 on A are seen in experiments. In Figs. 2 and 4, 
V represents maxima on the curves. 

G. N. Abramovich in 1943 and (independently) J. Taylor in 1948 proposed that a flow 
with a maximum discharge coefficient p(R2) is realized for each specified parameter A [prin- 
ciple of maximum discharge (PMD)].* Here, 

As is known from the hydraulic theory of spillways with a wide ramp and the linear prob- 
lem of the fracture of a dam on a horizontal base, the PMD corresponds to the critical flow 
and follows from the continuity and Euler equations. It can be shown by analogy that if we 
assume that the thickness h of the layer of liquid in the nozzle outlet is small and the 
surface of the core of the vortex approximates the cylindrical surface of the outlet in the 
outlet section, the flow should be critical and have the Froude number 

r r  - -  ~ .  / 1. / 1 ~ / R  = 1 + 0 (~ /~ ) ,  7~ ------ h /R  ------- t - -  7~ = (2A) - ~  + 0 (A-4/~),  

which for the specified value of A corresponds (to within quantities of the order of ~s/2) 
to the maximum discharge coefficient p. 

For fairly large, realistic twist parameters (A _> 2), use of the PMD in the hydraulic 
approximation has solid theoretical support and is backed by numerous experimental studies 
and is clearly the main technique employed in the design of centrifugal nozzles, various 
cyclone units, and other pieces of equipment whose operation involves swirling of the flow 
(for an example, see [2, Sec. 33; 3, pp. 90-94]). 

*In Declaration No. 389 on 10.18.90, the State Commission on Inventions recognized G. N. 
Abramovich, L. A. Klyachko, I. I. Novikova, and V. I. Skobelkina as having discovered the 
"Law of fluid discharge in a swirled flow," in January of 1948. 
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